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Steady-state magnetic field in the Alfvén resonance region
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The time-independent transverse magnetic field that is generated via the nonlinear mixing of linear
Alfvén waves is examined in the vicinity of the Alfvén resonance surface. It is shown that this magnetic
field is unidirectional, and it is confined within a narrow layer. The position of the layer along with the
amplitude and direction of the magnetic field within it can be controlled by means of the primary wave
frequency, wave numbers, and amplitude. Combinations of these magnetized layers can, therefore, be
used for the modification or synthesis of transverse magnetic fields.

PACS number(s): 52.35.Bj, 52.35.Mw

I. INTRODUCTION

Steady-state current can be efficiently generated by the
nonlinear mixing of linear Alfvén waves [1-5]. Previous
studies have indicated that this current is considerably
enhanced in regions where the derivatives of the field am-
plitudes are large. Keeping this in mind, we have exam-
ined the steady-state longitudinal current and the trans-
verse magnetic field in the vicinity of the Alfvén reso-
nance surface. Our results indicate that the leading-order
current density is indeed significantly large in this region.
It has, however, odd symmetry about the resonance sur-
face and, in agreement with previous studies [6,7], the to-
tal current in the resonance region is zero. The major
goal of this paper is to show that, even though the fotal
current is zero, the current’s characteristics are still very
attractive for current drive related applications. This is
primarily because of the transverse magnetic field that is
generated by the steady-state current. It will be shown
that this magnetic field is unidirectional and confined
within a narrow layer about the Alfvén resonance sur-
face. Since the position of this magnetized layer and the
direction and amplitude of the field within it can be easily
controlled externally, combinations of these layers can be
used in alternative ways for a number of related applica-
tions. Among them, we mention here the synthesis of
transverse magnetic fields with almost arbitrary profiles
and the modification of already existing fields. These
magnetized layers may also play an important role in the
generation of magnetic fields in astrophysical and geo-
physical plasmas, where Alfvén waves abound. We will
also show in the paper that viscosity leads to a broaden-
ing of the resonance layer and a flattening of the profile of
the magnetic field within it.

II. PLASMA MODEL AND BASIC EQUATIONS

We study the problem in a slab geometry with Carte-
sian spatial coordinates X, 7, and Z. It is assumed that the
plasma is cold and is governed by the equations of mag-
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netohydrodynamics. It is also assumed that the equilibri-
um magnetic field B,=B,Z is constant and directed
parallel to the z axis, while the equilibrium density g,
varies with ¥ only. Normalizing the governing plasma
equations and combining them, we obtain the system

p %+(v-V)v =(VXB)XB+yV?v, (1
%—]3—=VX(VXB)+6V2B, ()

where 7, €, p, v, and B are, respectively, the normalized
viscosity, resistivity, plasma density, velocity, and mag-
netic field. The variables have been normalized in the fol-
lowing manner:

V=‘L , B:-B_ , p= £ , €= Zm ,
Uy (Xo) BO ﬁo(xO) HoUA(xO)
LY0) ~ X
7/::—————2——— , — x=——_ N
po(fo)vA(xO) UA(go)
where v 4(X)=By[uoPo(X )] 1/% is the Alfvén speed, 7 is

the unnormalized resistivity, v is the unnormalized
viscosity, @ is the frequency of the primary wave, and
X =X, is the location of the Alfvén resonance surface. It
should be noted that all variables with a tilde are unnor-
malized. Our goal in this study is to solve Egs. (1) and
(2) for the steady-state magnetic field that is generated by
an externally excited Alfvén wave. To do so, we expand
all the fields using the ordering scheme

u=uy+06u;eV+8[u +uPe?¥]+ - +c.c., (3)

where ¥=k,y +k,z —t, 8 is a small parameter related to
the amplitude of the wave, u designates p or any com-
ponent of v or B, and k=k,§+k,Z is the normalized
wave vector with y and z components k, and k,, respec-
tively. The frequency does not appear explicitly in the
expression for ¢ because of our normalization conven-
tion. In Eq. (3), O(8) terms constitute the primary wave
that is excited by the external antenna. The O (8?) terms
are generated by the beating of these O(8) quantities.
Since the nonlinearities in the governing equations are
quadratic in second order, the O(8?) terms are found at
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zero and second harmonics of the fundamental frequen-
cy.
The O(8) terms in the governing equations can be
combined to obtain

AV =ik, 2(V-v))+iyLv,—V(V-v)
+ik, Vv, +iel(pgv,)+eyLv, , @)

where A(x)=py(x)—k2 and ,CEdZ/dxz—kf——kzz. The
magnetic field B, does not appear in the expression for 4
because of our normalization. If y=€=0, it is well
known that v, has a logarithmic singularity at the zeros
of A(x) [8]. Assuming that A4(x)=0 at x =x,, we
define x =x, as the Alfvén resonance surface. From the
z component of Eq. (4), we find that v, is independent of
the other components. Since it does not play an impor-
tant role in the dynamics of the problem, we let v,; be
zero in the rest of this analysis. Equation (4) can be
solved for the first-order fields. These first-order com-
ponents beat together with each other and generate
secondary waves at zero and second harmonics of the
fundamental frequency. The zero harmonic (steady-state)
wave has a longitudinal current associated with it. To
compute its density J\9', we combine the O(8?) terms in
the y component of Eq. (2) with

R): N
ax

which is the z component of the normalized Ampere law.
After some algebraic manipulations, we find that

J =—i[v, LB} +v} LB, ]+c.c. (6)

J9 = 5

III. ANALYTICAL SOLUTION

Equations (4)—(6) comprise the basic tools that we use
to analytically explore the characteristics of the steady-
state current and magnetic field in the vicinity of the
Alfven resonance surface. We first consider a purely
resistive plasma with ¥y =0. Following Kappraff and Ta-
taronis [9], we introduce a boundary layer about x =x,
with a width of O(e!/3). Outside the layer, resistive
terms are not important and the x and y components of
Eq. (4) can be combined to obtain

da
dx

A dvx 1

—_— + Av, ;=0 .
4 ——k}% dx le (7)

The dominant term in the solution for v, is [8]
v, =C(ln|x —xy|+iMm) , (8)

where C is an arbitrary constant, M =0 if x <x,,
M=sgn(A4,) if x >x,, and A4, is defined in Eq. (9). To
find the solution inside the layer, we introduce a scaled
variable 0 =€~ !"}(x —x,). We also expand the various
components as follows [9]:

A=€eo A, +e30%4,+ -+, &)
po=1+€"opy+€ 30 ppy+ -+, (10)
vxl:Ux10+61/30x11+€2/3vx12+ T an
v1=€ oy 0tonte ot (12)
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FIG. 1. Profile of f(0)=/(v,o0,50 ) +c.c., where v, o(0) is
given by Eq. (15) and the prime denotes derivatives with respect
to o. This particular plot has been computed for C=1, 4, =1,
and Ine!/3=—5,

The magnetic field components B, and B, are expanded
in a manner similar to v, and v, respectively. Inserting
Egs. (9)-(12) into Eq. (4) and combining the highest-

order terms, we find that v, ,, is governed by

- dv,o
do

=0. (13)

The component v,,;5 can be computed in terms of v, o us-
ing
i duxio

Uy10=k—y70“ . (14)

The solution of Eq. (13) that asymptotically matches the
exterior region solution is [10]

- © dp _ P’ _isgn(4,)po
Ve10=C fo —p*exp 34, (1 )
+1ne!/? (15)

Computing v, using Eq. (14) and B,,, and B, using
Eq. (2) and inserting them in Eq. (6), we find that the

highest-order contribution to J!Y is given by
k, d d*vfo
Jz(g) = — ekzy 2*0'- UXIOF +c.c. (16)

Using Eq. (15), it can be ascertained that the current den-
sity has odd symmetry about o =0. We have plotted the
profile of J!Y in Fig. 1 after combining Egs. (15) and (16)
and numerically evaluating the definite integrals. From
this figure it can be observed that the current is primarily
localized within two closely spaced layers. The current
density within these layers has equal magnitude but op-
posite polarity. Because of this odd symmetry, the total
current in the resonance region is zero. We can use Eq.
(5) to calculate the leading-order contribution to By(g’. It
is given by
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B‘°’=—kc I _p_ =Pl

»2 2/3k 0

isgn(A4,)po

The associated steady-state magnetic field is even about
o =0 and confined within a thin layer. We have plotted
B( in Fig. 3 after numerically solving Egs. (1) and (2).
From the expression for Byz , we find that the amplitude
and direction of the magnetic field are dependent on the
primary wave amplitude and wave numbers. The ampli-
tude and direction of the field within the layer can there-
fore be easily controlled externally. The position of the
layer is also dependent, and hence controllable, by means
of k,. We make the additional observation that if the pri-
mary wave has several spectral components, each com-
ponent will generate one such magnetized layer within
the plasma and the total steady-state magnetic field will
be a sum of the fields in the individual layers. The non-
linear interaction of the different spectral components
can be neglected in this situation since the magnetic fields
resulting from these interactions will vary harmonically
in z or ¢ and hence average to zero.

IV. NUMERICAL SOLUTION AND APPLICATIONS

The above three attributes of the magnetized layer
make it a valuable tool that can be used for the synthesis
or modification of transverse magnetic fields. In order to
illustrate these applications, we numerically solve

ABXI-—lpoeLB d N (18)
AByI:iPOG‘LByl_kyszzl 5 (19)
del p6 dszl p(,) del
=ik —ik, By — — + =
POle z dx z xlpo dxz Po dx
—k,k,B, +k!B, +iep,LB,, , (20)

as a boundary value problem in a plasma slab extending
from x = —a to a. Equations (18)-(20) can be derived
from Egs. (1) and (2) and they have been found con-
venient for numerical solution. In the solution, it is as-
sumed that

2

pO(x)=p0(max) —pO(min)] ’

- [pO(max)

where pg(min) and Pomay) are constants. Also, keeping in
mind the symmetry of the equilibrium quantities, we as-
sume that B, is odd about x =0 while B, and B, are
even. It is found with the numerical solutions that fields
in the interior are not sensitive to the values of B,; and
B, at the boundaries. Within a very thin boundary lay-
er, the fields connect to relatively slowly varying values
that are dependent only on B,;(x ==a). The boundary
conditions that we use are therefore B, ,(x ==%a)=0,
B,(x =*a)=0, and B,,(x =*a)=const. In the accom-

)+1ne'/?
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3 o
—p-/3| 4 —isgn( 4,)po
P34, ~isgnl 4, +c.c. (17)

[fowdp pe

[

panying diagrams, Figs. 2-4, the fields within these
boundary layers are not plotted since we are primarily in-
terested in the behavior in the resonance region. Figure 2
shows the profile of steady-state current density in one-
half of the plasma slab. It can be observed that the
profile of the current density is similar to Fig. 1, which
was computed using Eqgs. (15) and (16). There is, howev-
er, a minor degree of asymmetry that gives rise to a small
net integrated current [6,7]. Figure 3 shows the steady-
state transverse magnetic field for the same situation.
The slight asymmetry of the current density carries over
to the magnetic field as well. As described earlier, the
field is unidirectional and confined within a thin layer.
Using the method of Kappraff and Tataronis [9], it can
readily be shown that the width of the resonance layer is
of the order of 1 cm for Pheadrus-T-like equilibrium pa-
rameters [11]. Let us now assume that in the plasma
there is a series of magnetized layers that partially over-
lap. The field within these individual layers will add up
and the result will be a transverse magnetic field with a
profile that spans a wider region. Depending on the num-
ber of magnetized layers that are present, the magnetic
field can span a portion of the complete plasma slab. To
illustrate this, we have shown in Fig. 4 the total magnet-
ic field that is created using an O(8) wave with 27 spec-
tral components, each having the same frequency but
different wave numbers. Such a wave can be excited in
the plasma using an appropriate external antenna with
multiple components in the wave spectrum. Notice that
the total magnetic field has a smooth profile and spans
the whole plasma width. By changing the interspacing
between the magnetized layers and their relative ampli-

2| ,
1+ i
8__?1 0 - ~
__1 |- —
—2| 4
" L
0.0 0.2

FIG. 2. Plot of JYY’ obtained from the numerical solution of
Egs. (18)-(20). The values of parameters that have been used in
the computation are a =1.05, pomin)=0.8877, po(mx, 1.02,
k,=0.5, k,=0.99, B, (x=a)=0.002, €=10" and
Ax =1.05/1000.
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FIG. 3. Plot of B/ obtained from the numerical solution of
Eqs. (18)—(20). The values of parameters that have been used in
the computation are a =1.05, pomin)=0.8877, Poimax)=1.02,
k,=0.5, k,=0.99, B, (x=a)=0.022, €=10"°  and
Ax =1.05/1000.

tudes, the profile of this magnetic field can very easily be
modified. The magnetic field generated in this manner
can be used to modify already existing profiles as well as
synthesize new ones.

V. EFFECT OF VISCOSITY

Until now, we have concentrated on a purely resistive
plasma. We now analytically examine the effect of viscos-
ity on the steady-state longitudinal current by assuming
that ¥ and € are of the same order. This situation re-
quires the introduction of two additional boundary layers
in the resonance region to take into account the highest
derivative terms in Eq. (4). We also introduce a constant
B=1v /€, which reduces the number of small parameters

0.00 r T
- 4
~0.02 + -1
=g
m
-0.04 - 4
—0.06 - /l
P N | . U R .
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 4. Total steady-state magnetic field generated by excit-
ing an O (8) wave with 27 spectral components, each having the
same frequency but different wave numbers. The parameters
that are used in this computation are a =1.05, pomin)=0.8877,
Pomax)= 1.02, k,=0.5, €= 1073, and Ax =1.05/500. The wave
numbers k, and amplitude B,;(x =a) for the spectral com-
ponents are k,(,,;=1.01—0.003m and B,;,,(x =a)=0.0001m,
where m =0,1, .. .,26.

to one. In the exterior regions, dissipative effects are
negligible and v, is governed by Eq. (7). Its solution is
given by Eq. (8). On the outer periphery of the resonance
region where x —x,=0(€!”?), the leading-order terms in
Eq. (4) balance with the terms multiplied with €. Using
the scaled variable o and the asymptotic expansion de-
scribed in Egs. (9)-(12), we find that v, , is governed by
Eq. (13) with 4, now replaced by 4,/(1+p). The solu-
tion that asymptotically matches the exterior region solu-
tion is Eq. (15) with o replaced by o /(1+B)!2. This
viscosity-induced rescaling signifies a broadening -of the
resonance region. When the plasma was purely resistive,
the ‘‘intermediate” region solution was extended to
x =x,. the problem is, however, complicated in a
viscoresistive plasma due to the fact that the highest
derivative term in Eq. (4) is multiplied by €. In the re-
gion near the resonance layer where x —x,=0(¢€'/?), the
highest derivative terms in Eq. (4) balance with the terms
multiplied by €. To take this into account, we define an
interior region with a width of order €'/? and introduce a
scaled variable o'=€~1/?(x —x,) there. Expanding the
equilibrium and wave components in a manner similar to
Egs. (9)-(12) (with o replaced by o’ and €!”* replaced by
€7 !/2) and inserting this expansion in Eq. (4), we find that
V, 10 is governed by

d2
do_lZ

d4
do'

B

+i(1+B) ]vxw:O : @1

Retaining only the terms in the solution that do not ex-
ponentially increase as we leave the resonance surface
and matching them asymptotically to the solution in the
intermediate region, we obtain

V,10=C[Ine!*—iP,0'+P,0"+io"*€'?4,/6] , (22)

where P,=€"T(1)sgn(4,)| 4,|'3/3*/ and
P,=€'’T(2)(3] 4,]*73/6. The first-order fields can be
used to compute J.Y and BJE‘Z)’. In the intermediate re-
gions, J9) is given by Eq. (16) and By(g) by Eq. (17). In the
interior region, J\9' is governed by an expression similar
to Eq. (16) with € replaced by €3/2 and o replaced by o
However, if we substitute Eq. (22) into this expression, we
find that J/? is zero in the interior region. Consequently,
using Eq. (5), B;g) is constant there. The second effect of
viscosity is therefore a flattening of the magnetic field
within the resonance layer.

VI. CONCLUSIONS

In conclusion, we have examined the steady-state mag-
netic field that is generated by the nonlinear mixing of
linear Alfvén waves in the vicinity of the Alfvén reso-
nance surface. It was shown that this magnetic field is
unidirectional and is confined within a thin layer. Fur-
thermore, by using an antenna with multiple spectral
components, a whole series of these magnetized layers
can be created in the plasma. This feature can be utilized
for the modification or synthesis of transverse magnetic
fields. The present analysis has been carried out in a slab
geometry. Similar results will also be obtained in a cylin-
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drical plasma. Therefore, in principle, these techniques
should be applicable to toroidal plasmas with a large as-
pect ratio. The problem; however, has to be reexamined
for plasmas in which toroidal effects are strong.
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